280 research outputs found

    Realization of a twin beam source based on four-wave mixing in Cesium

    Full text link
    Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a χ(3)\chi^{(3)} medium (here cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain ≫1\gg 1) even in the CW pump regime, which is not the case for PDC χ(2)\chi^{(2)} phenomenon in non-linear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum protocols. Here we present the first realization of a source of 4-wave mixing exploiting D2D_2 line of Cesium atoms.Comment: 10 pages, 10 figure

    Regression Discontinuity Designs with Clustered Data

    Get PDF
    Regression discontinuity designs have become popular in empirical studies due to their attractive properties for estimating causal effects under transparent assumptions. Nonetheless, most popular procedures assume i.i.d. data, which is unreasonable in many common applications. To fill this gap, we derive the properties of traditional local polynomial estimators in a fixed- setting that allows for cluster dependence in the error term. Simulation results demonstrate that accounting for clustering in the data while selecting bandwidths may lead to lower MSE while maintaining proper coverage. We then apply our cluster-robust procedure to an application examining the impact of Low-Income Housing Tax Credits on neighborhood characteristics and low-income housing supply

    Beyond the fundamental noise limit in coherent optical fiber links

    Get PDF
    It is well known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are in general adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances remain limited by the so called delay-unsuppressed fiber noise that is related to the propagation delay of the light in the fiber. In this paper, we demonstrate a data post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6 dB improvement beyond the fundamental limit imposed by delay-unsuppressed noise is obtained. This result enhances the resolution of possible comparisons between remote optical clocks by a factor of 2. We confirm the theoretical prediction with experimental data obtained on a 47 km metropolitan fiber link, and propose how to extend this method for frequency dissemination purposes as well

    Robust optical frequency dissemination with a dual-polarization coherent receiver

    Get PDF
    Frequency dissemination over optical fiber links relies on measuring the phase of fiber-delivered lasers. Phase is extracted from optical beatnotes and the detection fails in case of beatnotes fading due to polarization changes, which strongly limit the reliability and robustness of the dissemination chain. We propose a new method that overcomes this issue, based on a dual-polarization coherent receiver and a dedicated signal processing that we developed on a field programmable gated array. Our method allowed analysis of polarization-induced phase noise from a theoretical and experimental point of view and endless tracking of the optical phase. This removes a major obstacle in the use of optical links for those physics experiments where long measurement times and high reliability are required

    A Search for Variations of Fundamental Constants using Atomic Fountain Clocks

    Get PDF
    Over five years we have compared the hyperfine frequencies of 133Cs and 87Rb atoms in their electronic ground state using several laser cooled 133Cs and 87Rb atomic fountains with an accuracy of ~10^{-15}. These measurements set a stringent upper bound to a possible fractional time variation of the ratio between the two frequencies : (d/dt)ln(nu_Rb/nu_Cs)=(0.2 +/- 7.0)*10^{-16} yr^{-1} (1 sigma uncertainty). The same limit applies to a possible variation of the quantity (mu_Rb/mu_Cs)*alpha^{-0.44}, which involves the ratio of nuclear magnetic moments and the fine structure constant.Comment: 4 pages, 3 figures, 1 table submitted to Phys. Rev. Let

    The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems

    Get PDF
    The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1\times10^-15 at 1 s integration time and relative inaccuracy below 5\times10^-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In this paper we present the project and the results achieved during the first year.Comment: Contribution to European Frequency and Time Forum 2012, Gothenburg, Swede

    The cultivable bacterial microbiota associated to the medicinal plant Origanum vulgare L.: from antibiotic resistance to growth-inhibitory properties

    Get PDF
    The insurgence of antibiotic resistance and emergence of multidrug-resistant (MDR) pathogens prioritize research to discover new antimicrobials. In this context, medicinal plants produce bioactive compounds of pharmacological interest: some extracts have antimicrobial properties that can contrast different pathogens. For such a purpose, Origanum vulgare L. (Lamiaceae family) is a medicinal aromatic plant, whose essential oil (EO) is recognized for its antiseptic, antimicrobial and antiviral activities. The cultivable bacteria from different compartments (i.e., flower, leaf, stem and soil) were isolated in order to: (i) characterize the bacterial microbiota associated to the plant, determining the forces responsible for the structuring of its composition (by evaluation of cross inhibition); (ii) investigate if bacterial endophytes demonstrate antimicrobial activities against human pathogens. A pool of plants belonging to O. vulgare species was collected and the specimen chemotype was defined by hydrodistillation of its essential oil. The isolation of plant associated bacteria was performed from the four compartments. Microbiota was further characterized through a culture-independent approach and next-generation sequencing analysis, as well. Isolates were molecularly typed by Random Amplified Polymorphic DNA (RAPD) profiling and taxonomically assigned by 16S rRNA gene sequencing. Antibiotic resistance profiles of isolates and pairwise cross-inhibition of isolates on agar plates (i.e., antagonistic interactions) were also assessed. High level of diversity of bacterial isolates was detected at both genus and strain level in all different compartments. Most strains were tolerant against common antibiotics; moreover, they produced antagonistic patterns of interactions mainly with strains from different compartments with respect to that of original isolation. Strains that exhibited high inhibitory properties were further tested against human pathogens, revealing a strong capacity to inhibit the growth of strains resistant to several antibiotics. In conclusion, this study regarded the characterization of O. vulgare L. chemotype and of the bacterial communities associated to this medicinal plant, also allowing the evaluation of antibiotic resistance and antagonistic interactions. This study provided the bases for further analyses on the possible involvement of endophytic bacteria in the production of antimicrobial molecules that could have an important role in clinical and therapeutic applications
    • 

    corecore